Here are 100 books that Proofs and Refutations fans have personally recommended if you like
Proofs and Refutations.
Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.
I'm a mathematician but an unusual one because I am interested in how mathematics is created and how it is learned. From an early age, I loved mathematics because of the beauty of its concepts and the precision of its organization and reasoning. When I started to do research I realized that things were not so simple. To create something new you had to suspend or go beyond your rational mind for a while. I realized that the learning and creating of math have non-logical features. This was my eureka moment. It turned the conventional wisdom (about what math is and how it is done) on its head.
I’m interested in how mathematicians create mathematics but this book made me realize that learning mathematics is also a form of creativity. Each of us has created our understanding of mathematics as we were growing up. We are all creative!
What is amazing about this book is that even children as young as six months possess rudimentary mathematical concepts, in particular, the concept of number. (Actually, Carey shows children have two distinct ways of thinking about numbers). The concept of number is built-in. That’s amazing to me! The mastery of counting numbers, 1,2,3,… is a great creative leap in the development of the child. This leap is followed by a series of further amazing accomplishments, for example, the insight that a fraction like 2/3, is a completely new kind of number (and not just a problem in division). How do kids manage to accomplish such radical changes in their concept…
Only human beings have a rich conceptual repertoire with concepts like tort, entropy, Abelian group, mannerism, icon and deconstruction. How have humans constructed these concepts? And once they have been constructed by adults, how do children acquire them? While primarily focusing on the second question, in The Origin of Concepts , Susan Carey shows that the answers to both overlap substantially.
Carey begins by characterizing the innate starting point for conceptual development, namely systems of core cognition. Representations of core cognition are the output of dedicated input analyzers, as with perceptual representations, but these core representations differ from perceptual representations…
It is April 1st, 2038. Day 60 of China's blockade of the rebel island of Taiwan.
The US government has agreed to provide Taiwan with a weapons system so advanced that it can disrupt the balance of power in the region. But what pilot would be crazy enough to run…
I'm a mathematician but an unusual one because I am interested in how mathematics is created and how it is learned. From an early age, I loved mathematics because of the beauty of its concepts and the precision of its organization and reasoning. When I started to do research I realized that things were not so simple. To create something new you had to suspend or go beyond your rational mind for a while. I realized that the learning and creating of math have non-logical features. This was my eureka moment. It turned the conventional wisdom (about what math is and how it is done) on its head.
Reuben Hersh is responsible for a revolution in the way we look at mathematics. His main idea is very simple: mathematics is something that is created by human beings. Isn’t that obvious, you say? Not if you believe that mathematics is there even before life itself, that it is built into the nature of reality in some way. In philosophy, this view is called Platonism. Hersh had the radical but obvious idea that if we want to understand what mathematics is we should look at what mathematicians actually do when they create mathematics. Like all great ideas it can be stated very simply but the implications are enormous. His ideas are what got me started writing my own books about math and science.
This book tackles the important questions which have engaged mathematicians, scientists, and philosophers for thousands of years and which are still being asked today. It does so with clarity and with scholarship born of first-hand experience; a knowledge both of the ideas and of the people who have pronounced on them. The main purpose of the book is to confront philosophical problems: In what sense do mathematical objects exist? How can we have knowledge of them? Why do mathematicians think mathematical entities exist for ever, independent of human action and knowledge? The book proposes an unconventional answer: mathematics has existence…
I experienced being a parent as a return to my own childhood. As much as I enjoyed teaching my children, I loved learning from them as well. That got me thinking about how one might recapture the joys and insights of childhood. As a philosopher interested in education, I have long wondered whether we leave childhood behind or somehow carry it with us into old age. I discovered that several important philosophers, such as Aristotle, Augustine, and Rousseau have keen insights about the relation of childhood to adulthood. And the biblical Jesus seems to have been the first person to suggest that adults can learn from children.
What if children are not little adults but a different species? Perhaps children are butterflies who develop into caterpillars? Child psychologist Allision Gopnik asks wonderful questions about human development. She notes that most of us produce our best art and ask our deepest questions (“Why is the sky blue?”) as small children.
Childhood, she says, is our time of basic research; adulthood is the time for practical applications. Like Jean-Jacques Rousseau, she celebrates the unique gifts of childhood, but she does not offer suggestions about how we might recapture those gifts.
In the last decade there has been a revolution in our understanding of the minds of infants and young children. We used to believe that babies were irrational, and that their thinking and experience were limited. Now Alison Gopnik ― a leading psychologist and philosopher, as well as a mother ― explains the cutting-edge scientific and psychological research that has revealed that babies learn more, create more, care more, and experience more than we could ever have imagined. And there is good reason to believe that babies are actually smarter, more thoughtful, and more conscious than adults. In a lively…
A Duke with rigid opinions, a Lady whose beliefs conflict with his, a long disputed parcel of land, a conniving neighbour, a desperate collaboration, a failure of trust, a love found despite it all.
Alexander Cavendish, Duke of Ravensworth, returned from war to find that his father and brother had…
I'm a mathematician but an unusual one because I am interested in how mathematics is created and how it is learned. From an early age, I loved mathematics because of the beauty of its concepts and the precision of its organization and reasoning. When I started to do research I realized that things were not so simple. To create something new you had to suspend or go beyond your rational mind for a while. I realized that the learning and creating of math have non-logical features. This was my eureka moment. It turned the conventional wisdom (about what math is and how it is done) on its head.
It’s a little weird that this book should find a place on my list. It’s a book about how society has become resistant to anything that is difficult and painful and the kinds of people that we have become as a result. But mathematics is difficult! To understand mathematics you have to think hard, sometimes for a long time. Moreover understanding something hard is discontinuous, it requires a leap to a new way of thinking. You have to start with a problem and this problem might be an ambiguity or a contradiction. A is true and Bis true but A and B seem to contradict one another. When you sort out this problem you will have learned something.
The moral here is to embrace things that are difficult if you want to learn significant new things. “No pain, no gain.” You don’t have to worry about some super AI…
Our societies today are characterized by a universal algophobia: a generalized fear of pain. We strive to avoid all painful conditions - even the pain of love is treated as suspect. This algophobia extends into society: less and less space is given to conflicts and controversies that might prompt painful discussions. It takes hold of politics too: politics becomes a palliative politics that is incapable of implementing radical reforms that might be painful, so all we get is more of the same.
Faced with the coronavirus pandemic, the palliative society is transformed into a society of survival. The virus enters…
Philosophy’s core questions have always obsessed me: What is real? What makes life worth living? Can knowledge be made secure? In graduate school at the University of Virginia I was drawn to mathematically formalized approaches to such questions, especially those of C. S. Peirce and Alain Badiou. More recently, alongside colleagues at Endicott College’s Center for Diagrammatic and Computational Philosophy and GCAS College Dublin I have explored applications of diagrammatic logic, category theory, game theory, and homotopy type theory to such problems as abductive inference and artificial intelligence. Philosophers committed to the perennial questions have much to gain today from studying the new methods and results of contemporary mathematics.
Zalamea’s book is the perfect introduction and survey if you want to understand how developments in contemporary mathematics are relevant to current philosophy.
Zalamea’s own approach follows closely in the steps of Peirce, Lautman, and Grothendieck, merging pragmatism, dialectics, and sheaf theory, but he also engages the work of dozens of other key mathematicians and philosophers coming from different points of view, sometimes cursorily, always tantalizingly.
No philosopher can read this book without a quickened heartbeat and eager plans to clear shelf space for some of the many volumes of mathematics and philosophy of mathematics canvassed here by Zalamea.
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest.
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics.
The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the…
Philosophy’s core questions have always obsessed me: What is real? What makes life worth living? Can knowledge be made secure? In graduate school at the University of Virginia I was drawn to mathematically formalized approaches to such questions, especially those of C. S. Peirce and Alain Badiou. More recently, alongside colleagues at Endicott College’s Center for Diagrammatic and Computational Philosophy and GCAS College Dublin I have explored applications of diagrammatic logic, category theory, game theory, and homotopy type theory to such problems as abductive inference and artificial intelligence. Philosophers committed to the perennial questions have much to gain today from studying the new methods and results of contemporary mathematics.
Far too many math books are written in a style so terse and ungenerous that all but the most mathematically gifted readers hardly have a fair chance of understanding.
On the other hand, the discursive style of much philosophy of mathematics gains readability at the expense of formal rigor. Button and Walsh strike the perfect balance in this exceptionally rich introduction to model theory from a distinctively philosophical perspective.
There’s no getting around the fact that the mathematics of model theory is hard going. But this book works through all the relevant proofs in clear and detailed terms (no lazy “we leave this as an exercise for the reader”), and the authors are always careful to motivate each section with well-chosen philosophical concerns right up front.
Model theory is used in every theoretical branch of analytic philosophy: in philosophy of mathematics, in philosophy of science, in philosophy of language, in philosophical logic, and in metaphysics. But these wide-ranging uses of model theory have created a highly fragmented literature. On the one hand, many philosophically significant results are found only in mathematics textbooks: these are aimed squarely at mathematicians; they typically presuppose that the reader has a serious background in mathematics; and little clue is given as to their philosophical significance. On the other hand, the philosophical applications of these results are scattered across disconnected pockets of…
The Duke's Christmas Redemption
by
Arietta Richmond,
A Duke who has rejected love, a Lady who dreams of a love match, an arranged marriage, a house full of secrets, a most unneighborly neighbor, a plot to destroy reputations, an unexpected love that redeems it all.
Lady Charlotte Wyndham, given in an arranged marriage to a man she…
Lilli Botchis, PhD, is a psycho-spiritual counselor, educator, and vibrational medicine developer with four decades of experience in advanced body/soul wellness and the development of higher consciousness. Her expertise includes botanicals, gems, color, flower essences, bio-energy therapies, and holographic soul readings. Lilli is an alchemist, mystic, and translator of Nature’s language as it speaks to our soul. A brilliant researcher in the field of consciousness, she understands the interconnectedness of Nature and the human being and is known as an extraordinary emissary of the natural world. Lilli has been inducted into the Sovereign Order of St. John of Jerusalem, Knights Hospitaller. Many seek her out for her visionary insights and compassionate wisdom.
According to Michael Schneider, "The universe may be a mystery, but it's no secret." This book is a comprehensive yet simple visual guide to understanding the hidden meaning in the mathematical composition of all physical form. It is fun and fascinating to discover the sacred geometry visible throughout nature, in flowers, crystals, plants, shells, and the human body. You don't have to be a mathematician to see the beauty and symmetry of these patterns in every expression of God's creation, once revealed.
Discover how mathematical sequences abound in our natural world in this definitive exploration of the geography of the cosmos
You need not be a philosopher or a botanist, and certainly not a mathematician, to enjoy the bounty of the world around us. But is there some sort of order, a pattern, to the things that we see in the sky, on the ground, at the beach? In A Beginner's Guide to Constructing the Universe, Michael Schneider, an education writer and computer consultant, combines science, philosophy, art, and common sense to reaffirm what the ancients observed: that a consistent language of…
As a kid I read every popular math book I could lay my hands on. When I became a mathematician I wanted to do more than teaching and research. I wanted to tell everyone what a wonderful and vital subject math is. I started writing popular math books, and soon was up to my neck in radio, TV, news media, magazines... For 12 years I wrote the mathematical Recreations Column for Scientific American. I was only the second mathematician in 170 years to deliver the Royal Institution Christmas Lectures, on TV with a live tiger. The University changed my job description: half research, half ‘outreach’. I had my dream job.
Mathematicians are constantly baffled by the public’s lack of awareness, not just of what mathematics does, but what it is. Today’s technological society functions only because of a vast range of mathematical concepts, techniques, and discoveries, which go far beyond elementary arithmetic and algebra. This was one of the first books to tackle these misunderstandings head on. It does so by examining not just the math and what it’s used for, but the social structures, the ‘conditions of civilization’ that have brought us to this curious state: utterly dependent on math, almost universally unaware that we are.
"A passionate plea against the use of formal mathematical reasoning as a method for solving mankind's problems. . . . An antidote to the Cartesian view that mathematical and scientific knowledge will suffice to solve the central problems of human existence." — The New York Times "These cogitations can and should be read by every literate person." — Science Books and Films "A warning against being seduced or intimidated by mathematics into accepting bad science, bad policies, and bad personal decisions." — Philadelphia Inquirer Rationalist philosopher and mathematician René Descartes visualized a world unified by mathematics, in which all intellectual…
Philosophy’s core questions have always obsessed me: What is real? What makes life worth living? Can knowledge be made secure? In graduate school at the University of Virginia I was drawn to mathematically formalized approaches to such questions, especially those of C. S. Peirce and Alain Badiou. More recently, alongside colleagues at Endicott College’s Center for Diagrammatic and Computational Philosophy and GCAS College Dublin I have explored applications of diagrammatic logic, category theory, game theory, and homotopy type theory to such problems as abductive inference and artificial intelligence. Philosophers committed to the perennial questions have much to gain today from studying the new methods and results of contemporary mathematics.
The Univalent Foundations program in foundations of mathematics launched by Voevodsky and others in the past decade and a half has contributed to a promising new paradigm unifying computation, mathematics, logic, and proof theory.
Understanding the core elements of this research program, Homotopy Type Theory, is essential for contemporary philosophers who want to engage directly with current developments in mathematics and computer science.
Corfield is a well-established name in philosophy of mathematics, and this book is the best introduction to Homotopy Type Theory for philosophers.
Working within themes and problematics that will be familiar to philosophers with a basic background in logic, Corfield covers the elementary constructions of homotopy types from a logical point of view and provides plenty of provocative suggestions for how these formal tools might reinvigorate philosophical research today.
"The old logic put thought in fetters, while the new logic gives it wings."
For the past century, philosophers working in the tradition of Bertrand Russell - who promised to revolutionise philosophy by introducing the 'new logic' of Frege and Peano - have employed predicate logic as their formal language of choice. In this book, Dr David Corfield presents a comparable revolution with a newly emerging logic - modal homotopy type theory.
Homotopy type theory has recently been developed as a new foundational language for mathematics, with a strong philosophical pedigree. Modal Homotopy Type Theory: The Prospect of a New…
This book follows the journey of a writer in search of wisdom as he narrates encounters with 12 distinguished American men over 80, including Paul Volcker, the former head of the Federal Reserve, and Denton Cooley, the world’s most famous heart surgeon.
In these and other intimate conversations, the book…
I have taught a broad array of humanities and social sciences courses over the years, sometimes employing case studies from the realm of law, most notably stories about undocumented migrants, refugees, or homeless people. I’ve also had occasion to teach in law schools, usually in ways that bridge the gap between the legality of forced displacement, and the lived experiences of those who have done it. I won a Rockefeller Foundation grant to write my newest book, Clamouring for Legal Protection, in which I considered the idea that we can learn a lot about refugees and vulnerable migrants with references to people we know well: Ulysses, Dante, Satan, and even Alice in Wonderland.
Weinstein takes the age-old question – what is literature? – and transforms it into why we (would want to) read literature. For him, literature changes us, allows us to be someone else, and provides us insight into the world we inhabit, and many more worlds we haven’t. He reads a broad array of works, from Sophocles to James Joyce and Toni Morrison, and thinks about such issues as identification, empathy, and sympathy with those we come to ‘know’ through our reading.
Mixing passion and humor, a personal work of literary criticism that demonstrates how the greatest books illuminate our lives
Why do we read literature? For Arnold Weinstein, the answer is clear: literature allows us to become someone else. Literature changes us by giving us intimate access to an astonishing variety of other lives, experiences, and places across the ages. Reflecting on a lifetime of reading, teaching, and writing, The Lives of Literature explores, with passion, humor, and whirring intellect, a professor's life, the thrills and traps of teaching, and, most of all, the power of literature to lead us to…