Here are 80 books that Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow fans have personally recommended if you like
Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow.
Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.
I’ve been working in machine learning for about a decade. I’ve always been more interested in applied than theoretical problems and while blogs and MOOCs (Massive Online Open Courses) are a great way to learn, for certain deep topics only a book would do. I also teach at University of Oxford, University of Birmingham, and various FTSE100 companies. My machine learning has exposed me to many fascinating problems—from leading my own ML-focused startup through Y Combinator—to working at various companies as a consultant. I think there is currently no great curriculum for the practitioners really wanting to apply deep learning in practical cases, so I have given it my best shot.
This is a fantastic book to get you started. It is written by the author of a leading deep learning framework Keras, which makes even Tensorflow very easy to use. Chollet is a true leader of the deep learning craft and the Manning team always does an excellent job of forcing authors to make the subject matter accessible. Highly recommended!
"The first edition of Deep Learning with Python is one of the best books on the subject. The second edition made it even better." - Todd Cook
The bestseller revised! Deep Learning with Python, Second Edition is a comprehensive introduction to the field of deep learning using Python and the powerful Keras library. Written by Google AI researcher Francois Chollet, the creator of Keras, this revised edition has been updated with new chapters, new tools, and cutting-edge techniques drawn from the latest research. You'll build your understanding through practical examples and intuitive explanations that make the complexities of deep learning…
The Victorian mansion, Evenmere, is the mechanism that runs the universe.
The lamps must be lit, or the stars die. The clocks must be wound, or Time ceases. The Balance between Order and Chaos must be preserved, or Existence crumbles.
Appointed the Steward of Evenmere, Carter Anderson must learn the…
I have been building real-time, production machine learning models for over 20 years. My book, and my book recommendations, are informed by that experience. I have a lot of empathy for people who are new to machine learning because I’ve taught courses on the topic. I founded the Advanced Solutions Lab at Google where we helped data scientists working for Google Cloud customers (who already knew ML) become ML engineers capable of building reliable ML models. The first two are the books I’d recommend today to newcomers and the last three to folks attending the ASL.
This recommendation is a bit of a cheat — I’m not recommending this exact book, but one of the books in the series that this book is part of.
Once you have the first two books under your belt, you’ll know how to solve ML problems. But you will keep reinventing the wheel. What you need next is a book on common “ML tricks” — best practices and common techniques when doing ML in production.
The problem is that these tricks are specific to the type of data that you will be processing. If you are going to be processing images or time series, read the corresponding books in the same series instead.
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey.
Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You'll learn how to…
I’ve been working in machine learning for about a decade. I’ve always been more interested in applied than theoretical problems and while blogs and MOOCs (Massive Online Open Courses) are a great way to learn, for certain deep topics only a book would do. I also teach at University of Oxford, University of Birmingham, and various FTSE100 companies. My machine learning has exposed me to many fascinating problems—from leading my own ML-focused startup through Y Combinator—to working at various companies as a consultant. I think there is currently no great curriculum for the practitioners really wanting to apply deep learning in practical cases, so I have given it my best shot.
Jeremy Howard is the lead author and has always been a world-class educator. This book is based on his fast.ai course, which has managed to splice all rigor, simplicity, and cutting edge techniques into one course. It also uses its custom fast.ai framework built on PyTorch, which is the dominant language for researchers. This book is very practically oriented and gets you off the ground very quickly with your own projects!
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.
Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to…
The Guardian of the Palace is the first novel in a modern fantasy series set in a New York City where magic is real—but hidden, suppressed, and dangerous when exposed.
When an ancient magic begins to leak into the world, a small group of unlikely allies is forced to act…
I have been building real-time, production machine learning models for over 20 years. My book, and my book recommendations, are informed by that experience. I have a lot of empathy for people who are new to machine learning because I’ve taught courses on the topic. I founded the Advanced Solutions Lab at Google where we helped data scientists working for Google Cloud customers (who already knew ML) become ML engineers capable of building reliable ML models. The first two are the books I’d recommend today to newcomers and the last three to folks attending the ASL.
Even if you have the practical knowledge, it's sometimes necessary to understand the mathematical and theoretical concepts that underlie the machine learning approaches you are using. This book is a great introduction to the world of ML theory.
WARNING: will not work on e-ink Kindle devices! Peter Norvig, Research Director at Google, co-author of AIMA, the most popular AI textbook in the world: "Burkov has undertaken a very useful but impossibly hard task in reducing all of machine learning to 100 pages. He succeeds well in choosing the topics — both theory and practice — that will be useful to practitioners, and for the reader who understands that this is the first 100 (or actually 150) pages you will read, not the last, provides a solid introduction to the field."
Aurélien Géron, Senior AI Engineer, author of the…
I am motivated by working on products that many people use. I've been a part of companies that deliver products impacting millions of people. To achieve it, I am working in the Big Data ecosystem and striving to simplify it by contributing to Dremio's Data LakeHouse solution. I worked on projects using Spark, HDFS, Cassandra, and Kafka technologies. I have been working in the software engineering industry for ten years now, and I've tried to share my experience and lessons learned in the Software Mistakes and Tradeoffs book, hoping that it will allow current and the next generation of engineers to create better software, leading to more happy users.
The Hands-on Machine Learning book presents an end-to-end approach to many problems that can be solved with machine learning.
Every concept and topic is backed up with a running code that you can experiment with and adapt to your real-world problems.
Thanks to this book, you will be able to understand the state of the art of today's machine learning and feel comfortable using the most up-to-date ML methods.
Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems.
With this updated third edition, author Aurelien Geron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout…
I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.
Of course, this is not the obvious book to recommend for reinforcement learning, but if you are a beginner, then it’s a quick and easy place to start. It’s compact and gets straight into the main algorithms.
It has a good balance between theory and code and will get you up and running quickly.
The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice
Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics.
Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM…
Aury and Scott travel to the Finger Lakes in New York’s wine country to get to the bottom of the mysterious happenings at the Songscape Winery. Disturbed furniture and curious noises are one thing, but when a customer winds up dead, it’s time to dig into the details and see…
As a child of the microcomputer revolution in the late 1970s, I’ve always been fascinated by the concept of a general-purpose machine that I could control. The deep learning revolution of 2010 or so, followed most recently by the advent of large language models like ChatGPT, has completely altered the landscape. It is now difficult to interpret the behavior of these systems in a way that doesn’t argue for intelligence of some kind. I’m passionate about AI because, decades after the initial heady claims made in the 1950s, AI has reached a point where the lofty promise is genuinely beginning to be kept. And we’re just getting started.
Goodfellow’s Deep Learning is a must in the field because it was the first. Prince’s new book is an essential follow-up to be up-to-date with the latest model types, including diffusion models (think Stable Diffusion or DALL-E), transformers (the heart of large language models), graph networks (reasoning over relationships), and reinforcement learning.
The math level is similar to what you’ll find in Goodfellow’s book.
An authoritative, accessible, and up-to-date treatment of deep learning that strikes a pragmatic middle ground between theory and practice.
Deep learning is a fast-moving field with sweeping relevance in today’s increasingly digital world. Understanding Deep Learning provides an authoritative, accessible, and up-to-date treatment of the subject, covering all the key topics along with recent advances and cutting-edge concepts. Many deep learning texts are crowded with technical details that obscure fundamentals, but Simon Prince ruthlessly curates only the most important ideas to provide a high density of critical information in an intuitive and digestible form. From machine learning basics to advanced…
I’ve been teaching and writing Python code (and managing others while they write Python code) for over 20 years. After all that time Python is still my tool of choice, and many times Python is the key part of how I explore and think about problems. My experience as a teacher also has prompted me to dig in and look for the simplest way of understanding and explaining the elegant way that Python features fit together.
I like this book not just because it’s a complete guide to the many ins and outs of data cleaning with Python, but also because David lays out the types of problems and the issues behind them. There are always trade-offs in data cleaning and this book lays out those trade-offs better than any other I’ve seen. This is one of the few books that as I go through it, I struggle to think of anything that could have been said better.
Think about your data intelligently and ask the right questions
Key Features
Master data cleaning techniques necessary to perform real-world data science and machine learning tasks
Spot common problems with dirty data and develop flexible solutions from first principles
Test and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description
Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the…
I’ve been dabbling in Python for the last 22 years. I am a regular speaker at Pycon India ever since its inception. Most of my talks are related to Django. I host arunrocks.com where I write tutorials, and articles and publish screencasts on several Django and Python topics. My initial screencast titled "Building a blog in 30 mins with Django" is one of the most popular screencasts for beginners in Django. I’m a developer member of the Django Software Foundation.
Building scalable and performant web applications is both an art and a science. This book focused on such techniques and hence goes beyond what most books on Django try to cover. Anyone running a Django site under heavy load will definitely learn a few tips from this book. However, it is light on explanations and expects you to figure out many things from reading the examples.
Magical realism meets the magic of Christmas in this mix of Jewish, New Testament, and Santa stories–all reenacted in an urban psychiatric hospital!
On locked ward 5C4, Josh, a patient with many similarities to Jesus, is hospitalized concurrently with Nick, a patient with many similarities to Santa. The two argue…
I am Wes McKinney, creator of the Python pandas project and author of Python for Data Analysis. I have been using Python for data work since 2007 and have worked extensively in the open source community to build accessible and fast data processing tools for Python programmers.
This is a great follow-up book to Python Data Science Handbook.
Co-authored by one of the core developers of scikit-learn, this provides a deeper introduction to doing machine learning work in Python. This will give you a solid foundation to be able to move on later to deeper topics including deep learning or other AI topics.
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the…