As a child of the microcomputer revolution in the late 1970s, I’ve always been fascinated by the concept of a general-purpose machine that I could control. The deep learning revolution of 2010 or so, followed most recently by the advent of large language models like ChatGPT, has completely altered the landscape. It is now difficult to interpret the behavior of these systems in a way that doesn’t argue for intelligence of some kind. I’m passionate about AI because, decades after the initial heady claims made in the 1950s, AI has reached a point where the lofty promise is genuinely beginning to be kept. And we’re just getting started.
Woolridge presents the history of artificial intelligence from the point of view of an insider. This book is one of the few accounts of AI history presenting a measured perspective, one that has weathered more than one boom and bust cycle.
The book is nicely complemented by his recent series of lectures, which can be easily found on YouTube. I read Woolridge as saying, “Yes, something new has happened with the advent of large language models, but much work remains.”
From Oxford's leading AI researcher comes a fun and accessible tour through the history and future of one of the most cutting edge and misunderstood field in science: Artificial Intelligence
The somewhat ill-defined long-term aim of AI is to build machines that are conscious, self-aware, and sentient; machines capable of the kind of intelligent autonomous action that currently only people are capable of. As an AI researcher with 25 years of experience, professor Mike Wooldridge has learned to be obsessively cautious about such claims, while still promoting an intense optimism about the future of the field. There have been genuine…
Artificial intelligence is, of necessity, an academic pursuit, at least initially. McCorduck’s book is her account of the history and development of AI. She was not a historian coming to events after the fact but a living witness. Her circle of friends included all the key figures, the people those of us who fell into AI later didn’t have the opportunity to know.
This book, personal and human, not technical and heavy, reveals the humanness of the process. Yes, artificial intelligence was the goal, but human intelligence (and frailty) were central to its emergence.
In the autumn of 1960, twenty-year-old humanities student Pamela McCorduck encountered both the fringe science of early artificial intelligence, and C. P. Snow's Two Cultures lecture on the chasm between the sciences and the humanities. Each encounter shaped her life. Decades later her lifelong intuition was realized: AI and the humanities are profoundly connected. During that time, she wrote the first modern history of artificial intelligence, Machines Who Think, and spent much time pulling on the sleeves of public intellectuals, trying in futility to suggest that artificial intelligence could be important. Memoir, social history, group biography of the founding fathers…
Deep learning burst on the scene in 2012 with the success of the AlexNet model in the ImageNet competition. The first comprehensive deep learning text was this one, released in 2016.
It’s almost a necessity for deep learning practitioners, but it is not for beginners. Think of it as a graduate-level text. After eight years, some portions read as slightly dated, but the essentials have not changed.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.
“Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all…
Goodfellow’s Deep Learning is a must in the field because it was the first. Prince’s new book is an essential follow-up to be up-to-date with the latest model types, including diffusion models (think Stable Diffusion or DALL-E), transformers (the heart of large language models), graph networks (reasoning over relationships), and reinforcement learning.
The math level is similar to what you’ll find in Goodfellow’s book.
An authoritative, accessible, and up-to-date treatment of deep learning that strikes a pragmatic middle ground between theory and practice.
Deep learning is a fast-moving field with sweeping relevance in today’s increasingly digital world. Understanding Deep Learning provides an authoritative, accessible, and up-to-date treatment of the subject, covering all the key topics along with recent advances and cutting-edge concepts. Many deep learning texts are crowded with technical details that obscure fundamentals, but Simon Prince ruthlessly curates only the most important ideas to provide a high density of critical information in an intuitive and digestible form. From machine learning basics to advanced…
Alan Turing’s 1936 paper “On Computable Numbers, with an Application to the Entscheidungsproblem” was foundational to the development of computer science. To this day, Turing machines, the theoretical computational devices imagined in Turing’s paper, are a research cornerstone as they embody the concept of “computable.” If a programming language can implement a Turing machine, then the language is deemed Turing complete and is, therefore, general-purpose enough to implement any algorithm.
Turing’s paper is readable, but Petzold’s book breaks it down in minute detail to explain the nomenclature and meaning behind Turing’s words. I believe all computer science students should study this paper, and you’ll be hard-pressed to find a more thorough review than the one presented in this book.
Programming Legend Charles Petzold unlocks the secrets of the extraordinary and prescient 1936 paper by Alan M. Turing
Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be computable, creating the field of computability theory in the process, a foundation of present-day computer programming.
The book expands Turing's original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing's statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks,…
Artificial intelligence seems magical, even frightening, to people
who do not understand how it works. However, AI isn’t magic; it is understandable. People who read How AI Works come away equipped to follow and
comprehend the current, often over-the-top, discussion of AI.
As a student, my professors told me that if I couldn’t
explain a concept to someone with a high school education, I
didn’t understand the concept myself. My goal was to write a book that
explains the concepts behind AI without mathematics. This includes where
AI came from and its progression from the 1950s to becoming what it is today, machine learning, and what deep-learning models do and how.