Here are 62 books that Fundamentals of Machine Learning for Predictive Data Analytics, Second Edition fans have personally recommended if you like Fundamentals of Machine Learning for Predictive Data Analytics, Second Edition. Book DNA is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of Machine Learning For Absolute Beginners: A Plain English Introduction

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why Yuxi loves this book

This could be the first stop of your brand new machine learning journey. I personally like how the technical concept is translated into plain English – each chapter starts with a high-level overview of a ML algorithm or methodology, concise and clear, followed by lots of visual examples and real world scenarios. I can guarantee you won’t get lost halfway. The book focuses on getting you introduced to ML with minimal math. But if you want to grasp some more of math, the next book I recommend is waiting for you. 

By Oliver Theobald ,

Why should I read it?

1 author picked Machine Learning For Absolute Beginners as one of their favorite books, and they share why you should read it.

What is this book about?

NOTICE: To buy the newest edition of this book (2021), please search "Machine Learning Absolute Beginners Third Edition" on Amazon. The product page you are currently viewing is for the 2nd Edition (2017) of this book.

Featured by Tableau as the first of "7 Books About Machine Learning for Beginners."

Ready to spin up a virtual GPU instance and smash through petabytes of data? Want to add 'Machine Learning' to your LinkedIn profile?

Well, hold on there...

Before you embark on your epic journey, there are some high-level theory and statistical principles to weave through first.
But rather than spend…


If you love Fundamentals of Machine Learning for Predictive Data Analytics, Second Edition...

Ad

Book cover of Aggressor

Aggressor by FX Holden,

It is April 1st, 2038. Day 60 of China's blockade of the rebel island of Taiwan.

The US government has agreed to provide Taiwan with a weapons system so advanced that it can disrupt the balance of power in the region. But what pilot would be crazy enough to run…

Book cover of Mathematics for Machine Learning

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why Yuxi loves this book

The book is a well-curated collection of the essential mathematical concepts that form ML. You may experience a cultural shock jumping to this book from the previous one, because the writing in this book is a bit formal. However, it is the missing but necessary piece for building solid foundations for practical ML. You will find it more valuable combining the intuition behind ML that you gained previously. And the explanations in the book are succinct and from the ML perspectives. For instance, partial derivatives are explained in terms of neural network weight optimization. I wish the concepts in Linear Algebra, Vector Calculus, and Probability courses back in college were introduced this way so I understand better how they are applied.  

By Marc Peter Deisenroth , A. Aldo Faisal , Cheng Soon Ong

Why should I read it?

1 author picked Mathematics for Machine Learning as one of their favorite books, and they share why you should read it.

What is this book about?

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these…


Book cover of Introduction to Machine Learning with Python: A Guide for Data Scientists

Wes McKinney Author Of Python for Data Analysis

From my list on Python books for leveling up your data skills.

Why am I passionate about this?

I am Wes McKinney, creator of the Python pandas project and author of Python for Data Analysis. I have been using Python for data work since 2007 and have worked extensively in the open source community to build accessible and fast data processing tools for Python programmers.

Wes' book list on Python books for leveling up your data skills

Wes McKinney Why Wes loves this book

This is a great follow-up book to Python Data Science Handbook.

Co-authored by one of the core developers of scikit-learn, this provides a deeper introduction to doing machine learning work in Python. This will give you a solid foundation to be able to move on later to deeper topics including deep learning or other AI topics.

By Andreas C. Müller , Sarah Guido ,

Why should I read it?

2 authors picked Introduction to Machine Learning with Python as one of their favorite books, and they share why you should read it.

What is this book about?

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the…


If you love John D. Kelleher...

Ad

Book cover of Trusting Her Duke

Trusting Her Duke by Arietta Richmond,

A Duke with rigid opinions, a Lady whose beliefs conflict with his, a long disputed parcel of land, a conniving neighbour, a desperate collaboration, a failure of trust, a love found despite it all.

Alexander Cavendish, Duke of Ravensworth, returned from war to find that his father and brother had…

Book cover of Programming Collective Intelligence: Building Smart Web 2.0 Applications

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why Yuxi loves this book

This was my favorite book when I started my career. It talks about how information is processed, in an intelligent way, in the internet age. It acts as a tutorial to teach developers how to code our own ML programs, from online dating services, to document analyzer, and search engine. The author did an excellent job of explaining abstract ML algorithms with clear examples. His coding style in Python reads clearly, which makes the book more beginner-friendly.

Don’t get disappointed when you know this book is more than a decade old. It was a visionary book back in the day and it is still relevant today.

By Toby Segaran ,

Why should I read it?

1 author picked Programming Collective Intelligence as one of their favorite books, and they share why you should read it.

What is this book about?

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing,…


Book cover of The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Why am I passionate about this?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why Chris loves this book

This book might as well be called Introduction to machine learning, and it is probably one of the only books truly deserving of the title. Did you know neural networks have been used for decades to scan checks at the bank? They are called Boltzman Machine. Have you ever heard of how decision trees were used in old-school data mining? You could only get them from proprietary software packages from the early 2000s.

In quant trading, you will constantly face compute power constraints, so it is invaluable to understand the mathematical foundations of the most old-school machine learning methods out there. Researchers 20 years ago used to do a lot of impressive work with a lot less computing power.

By Trevor Hastie , Robert Tibshirani , Jerome Friedman

Why should I read it?

2 authors picked The Elements of Statistical Learning as one of their favorite books, and they share why you should read it.

What is this book about?

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major…


Book cover of Python Data Science Handbook

Wes McKinney Author Of Python for Data Analysis

From my list on Python books for leveling up your data skills.

Why am I passionate about this?

I am Wes McKinney, creator of the Python pandas project and author of Python for Data Analysis. I have been using Python for data work since 2007 and have worked extensively in the open source community to build accessible and fast data processing tools for Python programmers.

Wes' book list on Python books for leveling up your data skills

Wes McKinney Why Wes loves this book

While this book has a good amount of overlap with my book, it provides a valuable introduction to scikit-learn, one of the most popular libraries for machine learning in Python. There is also excellent content to improve your data visualization skills with matplotlib.

By Jake VanderPlas ,

Why should I read it?

1 author picked Python Data Science Handbook as one of their favorite books, and they share why you should read it.

What is this book about?

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all-IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is…


If you love Fundamentals of Machine Learning for Predictive Data Analytics, Second Edition...

Ad

Book cover of The Duke's Christmas Redemption

The Duke's Christmas Redemption by Arietta Richmond,

A Duke who has rejected love, a Lady who dreams of a love match, an arranged marriage, a house full of secrets, a most unneighborly neighbor, a plot to destroy reputations, an unexpected love that redeems it all.

Lady Charlotte Wyndham, given in an arranged marriage to a man she…

Book cover of Information Quality: The Potential of Data and Analytics to Generate Knowledge

Ron S. Kenett Author Of The Real Work of Data Science: Turning Data into Information, Better Decisions, and Stronger Organizations

From my list on how numbers turn into information.

Why am I passionate about this?

I was trained as a mathematician but have always been motivated by problem-solving challenges. Statistics and analytics combine mathematical models with statistical thinking. My career has always focused on this combination and, as a statistician, you can apply it in a wide range of domains. The advent of big data and machine learning algorithms has opened up new opportunities for applied statisticians. This perspective complements computer science views on how to address data science. The Real Work of Data Science, covers 18 areas (18 chapters) that need to be pushed forward in order to turning data into information, better decisions, and stronger organizations

Ron's book list on how numbers turn into information

Ron S. Kenett Why Ron loves this book

A lightly technical introduction to a comprehensive framework defining and evaluating the quality of information generated by statistical analysis. It expands the role of analytics by including dimensions that affect information quality such as data resolution, data integration, operationalization, and generalizability of findings. This wide-angle perspective provides a practical checklist that has been found useful in applications. Multiple case studies enable the reader to connect to his favorite topic, but also learn from other areas.

By Ron S. Kenett , Galit Shmueli ,

Why should I read it?

1 author picked Information Quality as one of their favorite books, and they share why you should read it.

What is this book about?

Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance…


Book cover of Be Data Literate: The Data Literacy Skills Everyone Needs to Succeed

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why Jeremy loves this book

Not everybody needs to be a data scientist, but everybody does need to be data literate. Without an intentional focus on evangelism and building a strong data culture in your organization it will be an uphill battle to make meaningful change. This book helps individuals and leaders to understand what data literacy is, and how we can build it like any other skill.

By Jordan Morrow ,

Why should I read it?

1 author picked Be Data Literate as one of their favorite books, and they share why you should read it.

What is this book about?

In the fast moving world of the fourth industrial revolution not everyone needs to be a data scientist but everyone should be data literate, with the ability to read, analyze and communicate with data. It is not enough for a business to have the best data if those using it don't understand the right questions to ask or how to use the information generated to make decisions. Be Data Literate is the essential guide to developing the curiosity, creativity and critical thinking necessary to make anyone data literate, without retraining as a data scientist or statistician. With learnings to show…


Book cover of Rage Inside the Machine: The Prejudice of Algorithms, and How to Stop the Internet Making Bigots of Us All

Peter J. Bentley Author Of Artificial Intelligence and Robotics: Ten Short Lessons

From my list on no hype and no nonsense artificial intelligence.

Why am I passionate about this?

I’ve been a geeky kid all my life. (I don’t think I’ve quite grown up yet.) Born in the 1970s, my childhood was a wonderful playground of building robots and software. I was awarded one of the early degrees in AI, and a PhD in genetic algorithms. I’ve since spent 25 years exploring how to make computers think, build, invent, compose… and I’ve also spent 20 years writing popular science books. I’m lucky enough to be a Professor in one of the world’s best universities for Computer Science and Machine Learning: UCL, and I guess I’ve written two or three hundred scientific papers over the years. I still think I know nothing at all about real or artificial intelligence, but then does anyone?

Peter's book list on no hype and no nonsense artificial intelligence

Peter J. Bentley Why Peter loves this book

OK, I’m biased here because Rob is an old friend of mine. We first met at academic conferences and had several heated debates (arguments). But after spending a little time together at a workshop we realised each probably knew what they were talking about after all. Robert Elliott Smith, I should make clear it's not the Rob Smith who writes about “Artificial Superintelligence”. Those books definitely do not make this list.

Our Rob is a coherent, grounded scientist with bags of real-world experience, and he brings his knowledge to this title with gusto, telling us about how AI is affecting our lives in ways you never thought possible – and often not in a good way. If you want to understand what can go wrong with AI and what we should be doing to stop it, don’t read about singularities or other such nonsense, read this.

By Robert Elliott Smith ,

Why should I read it?

1 author picked Rage Inside the Machine as one of their favorite books, and they share why you should read it.

What is this book about?

Shortlisted for the 2020 Business Book Awards

We live in a world increasingly ruled by technology; we seem as governed by technology as we do by laws and regulations. Frighteningly often, the influence of technology in and on our lives goes completely unchallenged by citizens and governments. We comfort ourselves with the soothing refrain that technology has no morals and can display no prejudice, and it's only the users of technology who distort certain aspects of it.

But is this statement actually true? Dr Robert Smith thinks it is dangerously untrue in the modern era.

Having worked in the field…


If you love John D. Kelleher...

Ad

Book cover of Old Man Country

Old Man Country by Thomas R. Cole,

This book follows the journey of a writer in search of wisdom as he narrates encounters with 12 distinguished American men over 80, including Paul Volcker, the former head of the Federal Reserve, and Denton Cooley, the world’s most famous heart surgeon.

In these and other intimate conversations, the book…

Book cover of Advanced Analytics with Spark: Patterns for Learning from Data at Scale

Tomasz Lelek Author Of Software Mistakes and Tradeoffs: How to make good programming decisions

From my list on big data processing ecosystem.

Why am I passionate about this?

I am motivated by working on products that many people use. I've been a part of companies that deliver products impacting millions of people. To achieve it, I am working in the Big Data ecosystem and striving to simplify it by contributing to Dremio's Data LakeHouse solution. I worked on projects using Spark, HDFS, Cassandra, and Kafka technologies. I have been working in the software engineering industry for ten years now, and I've tried to share my experience and lessons learned in the Software Mistakes and Tradeoffs book, hoping that it will allow current and the next generation of engineers to create better software, leading to more happy users.

Tomasz's book list on big data processing ecosystem

Tomasz Lelek Why Tomasz loves this book

Apache Spark has a very high point of entry for newcomers to the Big Data ecosystem.

However, it is a key tool that almost everyone is using for running distributed processing. I recommend everyone to read this book before delving into production solutions based on Apache Spark.

This book will allow you to alleviate many spark problems, such as serialization, memory utilization, and parallelization of processing.

By Sandy Ryza , Uri Laserson , Sean Owen , Josh Wills

Why should I read it?

1 author picked Advanced Analytics with Spark as one of their favorite books, and they share why you should read it.

What is this book about?

In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques-classification, collaborative filtering, and anomaly detection among others-to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find these patterns useful for…


Book cover of Machine Learning For Absolute Beginners: A Plain English Introduction
Book cover of Mathematics for Machine Learning
Book cover of Introduction to Machine Learning with Python: A Guide for Data Scientists

Share your top 3 reads of 2025!

And get a beautiful page showing off your 3 favorite reads.

1,211

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in data mining, machine learning, and artificial intelligence?

Data Mining 14 books
Machine Learning 54 books