Here are 67 books that Competing on Analytics fans have personally recommended if you like
Competing on Analytics.
Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.
I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector. I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics.
Not everybody needs to be a data scientist, but everybody does need to be data literate. Without an intentional focus on evangelism and building a strong data culture in your organization it will be an uphill battle to make meaningful change. This book helps individuals and leaders to understand what data literacy is, and how we can build it like any other skill.
In the fast moving world of the fourth industrial revolution not everyone needs to be a data scientist but everyone should be data literate, with the ability to read, analyze and communicate with data.
It is not enough for a business to have the best data if those using it don't understand the right questions to ask or how to use the information generated to make decisions. Be Data Literate is the essential guide to developing the curiosity, creativity and critical thinking necessary to make anyone data literate, without retraining as a data scientist or statistician.
With learnings to show…
It is April 1st, 2038. Day 60 of China's blockade of the rebel island of Taiwan.
The US government has agreed to provide Taiwan with a weapons system so advanced that it can disrupt the balance of power in the region. But what pilot would be crazy enough to run…
I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector. I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics.
Data scientists and analytics specialists are great at building models and algorithms, but often wrap them in a presentation or dashboard that diminishes their value and reduces the likelihood of their work being adopted. This book encourages practitioners to always consider the last mile and to pay as much attention to presentation and aesthetics as we do to the model itself.
Master the art and science of data storytelling-with frameworks and techniques to help you craft compelling stories with data.
The ability to effectively communicate with data is no longer a luxury in today's economy; it is a necessity. Transforming data into visual communication is only one part of the picture. It is equally important to engage your audience with a narrative-to tell a story with the numbers. Effective Data Storytelling will teach you the essential skills necessary to communicate your insights through persuasive and memorable data stories.
Narratives are more powerful than raw statistics, more enduring than pretty charts. When…
I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector. I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics.
Since data science is, at its core, people helping people make decisions, it is essential that we can establish productive relationships with our stakeholders. This is a skill that needs to be given the same level of effort as we give to coding or statistics. Gilbert’s book is a great resource to help technically oriented people to advance their people skills.
"For the engineer, scientist, or technology professional seeking to communicate better in the business world, this is the book you've been craving your entire career!" ” — Douglas Laney, Innovation Fellow, West Monroe, and best-selling author of "Infonomics"
Your analytical skills are incredibly valuable. However, rational thinking alone isn’t enough.
Have you ever:
Presented an idea, but then no one seemed to care?
Explained your analysis, only to leave your colleague confused?
Struggled to work with people who are less analytical and more emotional?
In these situations, people skills make the difference, and research shows these skills are becoming increasingly…
A Duke with rigid opinions, a Lady whose beliefs conflict with his, a long disputed parcel of land, a conniving neighbour, a desperate collaboration, a failure of trust, a love found despite it all.
Alexander Cavendish, Duke of Ravensworth, returned from war to find that his father and brother had…
I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector. I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics.
Management as a skill is typically established and honed by osmosis, mimicry, and corporate crash courses. Data scientists pursuing management roles need to understand management from base principles to create meaningful change and establish productive team conventions. After almost 70 years, Drucker’s book still stands up as a foundational piece of reading.
A classic since its publication in 1954, The Practice of Management was the first book to look at management as a whole and being a manager as a separate responsibility. The Practice of Management created the discipline of modern management practices. Readable, fundamental, and basic, it remains an essential book for students, aspiring managers, and seasoned professionals.
I am the Fletcher Jones Professor of Economics at Pomona College. I started out as a macroeconomist but, early on, discovered stats and stocks—which have long been fertile fields for data torturing and data mining. My book, Standard Deviations: Flawed Assumptions, Tortured Data, and Other Ways to Lie with Statistics is a compilation of a variety of dubious and misleading statistical practices. More recently, I have written several books on AI, which has a long history of overpromising and underdelivering because it is essentially data mining on steroids. No matter how loudly statisticians shout correlation is not causation, some will not hear.
The title is provocative but justified because so much of the “evidence” that we are bombarded with daily is bullshit. This is a wonderful compilation of statistical mistakes and misuses that are intended to persuade readers to be skeptical and to show them how to recognize bullshit when they see it.
Bullshit isn’t what it used to be. Now, two science professors give us the tools to dismantle misinformation and think clearly in a world of fake news and bad data.
“A modern classic . . . a straight-talking survival guide to the mean streets of a dying democracy and a global pandemic.”—Wired
Misinformation, disinformation, and fake news abound and it’s increasingly difficult to know what’s true. Our media environment has become hyperpartisan. Science is conducted by press release. Startup culture elevates bullshit to high art. We are fairly well equipped to spot the sort of old-school bullshit that is based…
I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.
This could be the first stop of your brand new machine learning journey. I personally like how the technical concept is translated into plain English – each chapter starts with a high-level overview of a ML algorithm or methodology, concise and clear, followed by lots of visual examples and real world scenarios. I can guarantee you won’t get lost halfway. The book focuses on getting you introduced to ML with minimal math. But if you want to grasp some more of math, the next book I recommend is waiting for you.
NOTICE: To buy the newest edition of this book (2021), please search "Machine Learning Absolute Beginners Third Edition" on Amazon. The product page you are currently viewing is for the 2nd Edition (2017) of this book.
Featured by Tableau as the first of "7 Books About Machine Learning for Beginners."
Ready to spin up a virtual GPU instance and smash through petabytes of data? Want to add 'Machine Learning' to your LinkedIn profile?
Well, hold on there...
Before you embark on your epic journey, there are some high-level theory and statistical principles to weave through first. But rather than spend…
The Duke's Christmas Redemption
by
Arietta Richmond,
A Duke who has rejected love, a Lady who dreams of a love match, an arranged marriage, a house full of secrets, a most unneighborly neighbor, a plot to destroy reputations, an unexpected love that redeems it all.
Lady Charlotte Wyndham, given in an arranged marriage to a man she…
I am Wes McKinney, creator of the Python pandas project and author of Python for Data Analysis. I have been using Python for data work since 2007 and have worked extensively in the open source community to build accessible and fast data processing tools for Python programmers.
This is a great follow-up book to Python Data Science Handbook.
Co-authored by one of the core developers of scikit-learn, this provides a deeper introduction to doing machine learning work in Python. This will give you a solid foundation to be able to move on later to deeper topics including deep learning or other AI topics.
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the…
I am motivated by working on products that many people use. I've been a part of companies that deliver products impacting millions of people. To achieve it, I am working in the Big Data ecosystem and striving to simplify it by contributing to Dremio's Data LakeHouse solution. I worked on projects using Spark, HDFS, Cassandra, and Kafka technologies. I have been working in the software engineering industry for ten years now, and I've tried to share my experience and lessons learned in the Software Mistakes and Tradeoffs book, hoping that it will allow current and the next generation of engineers to create better software, leading to more happy users.
Apache Spark has a very high point of entry for newcomers to the Big Data ecosystem.
However, it is a key tool that almost everyone is using for running distributed processing. I recommend everyone to read this book before delving into production solutions based on Apache Spark.
This book will allow you to alleviate many spark problems, such as serialization, memory utilization, and parallelization of processing.
In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques-classification, collaborative filtering, and anomaly detection among others-to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find these patterns useful for…
I was trained as a mathematician but have always been motivated by problem-solving challenges. Statistics and analytics combine mathematical models with statistical thinking. My career has always focused on this combination and, as a statistician, you can apply it in a wide range of domains. The advent of big data and machine learning algorithms has opened up new opportunities for applied statisticians. This perspective complements computer science views on how to address data science. The Real Work of Data Science, covers 18 areas (18 chapters) that need to be pushed forward in order to turning data into information, better decisions, and stronger organizations
A lightly technical introduction to a comprehensive framework defining and evaluating the quality of information generated by statistical analysis. It expands the role of analytics by including dimensions that affect information quality such as data resolution, data integration, operationalization, and generalizability of findings. This wide-angle perspective provides a practical checklist that has been found useful in applications. Multiple case studies enable the reader to connect to his favorite topic, but also learn from other areas.
Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance…
This book follows the journey of a writer in search of wisdom as he narrates encounters with 12 distinguished American men over 80, including Paul Volcker, the former head of the Federal Reserve, and Denton Cooley, the world’s most famous heart surgeon.
In these and other intimate conversations, the book…
I am Wes McKinney, creator of the Python pandas project and author of Python for Data Analysis. I have been using Python for data work since 2007 and have worked extensively in the open source community to build accessible and fast data processing tools for Python programmers.
While this book has a good amount of overlap with my book, it provides a valuable introduction to scikit-learn, one of the most popular libraries for machine learning in Python. There is also excellent content to improve your data visualization skills with matplotlib.
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all-IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is…